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Lemma 0.1 (for Exercise VIII.1.1). Let b ∈ C \ {0}. Then 1
z−b is represented by the series

−
∑∞

n=0 b
−n−1zn in the disk |z| < |b|.

Proof. First, note that we can rewrite it as

1

z − b
= −1

b

(
1

1− z
b

)
Then we know that 1

1− z
b

is represented by
∑∞

n=0

(
z
b

)n
on | z

b
| < 1 ⇐⇒ |z| < |b|, so the series

representing 1
z−b is

−1

b

∞∑
n=0

(z
b

)n
= −1

b

∞∑
n=0

b−nzn = −
∞∑
n=0

b−n−1zn

Lemma 0.2 (for Exercise VIII.1.1). Let a ∈ C \ {0}. Then 1
z−a is represented by the series∑∞

n=0 a
nz−n−1 in the region |a| < |z|.

Proof. We can rewrite it as
1

z − a
=

1

z

(
1

1− a
z

)
The second factor is represented by the power series

∑∞
n=0

(
a
z

)n
on |a

z
| < 1 ⇐⇒ |a| < |z|.

Thus 1
z−a is represented by

1

z

∞∑
n=0

(a
z

)n
=

1

z

∞∑
n=0

anz−n =
∞∑
n=0

anz−n−1

Proposition 0.3 (Exercise VIII.1.1). Let a, b ∈ C so that 0 < |a| < |b|. Then the series

1

b− a

∞∑
n=−∞

cnz
n
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represents the function 1
(z−a)(z−b) in the annulus |a| < |z| < |b|, where

cn =

{
an+1 n < 0

b−n−1 n ≥ 0

Proof. We can rewrite it as

1

(z − a)(z − b)
=

(
1

b− a

)(
1

z − a

)
+

(
1

a− b

)(
1

z − b

)
Using the previous two lemmas, 1

z−a is represented by
∑∞

n=0 a
nz−n−1 on |a| < |z|, and 1

z−b is
represented by −

∑∞
n=0 b

−n−1zn on |z| < |b|, so on |a| < |z| < |b| we can represent the above
by(

1

b− a

∞∑
n=0

anz−n−1

)
−

(
1

a− b

∞∑
n=0

b−n−1zn

)
=

(
1

b− a

−1∑
n=−∞

an+1zn

)
+

(
1

b− a

∞∑
n=0

b−n−1zn

)
If we define

cn =

{
an+1 n < 0

b−n−1 n ≥ 0

Then we can represent 1
(z−a)(z−b) by the series

1

b− a

∞∑
n=−∞

cnz
n

on |a| < |z| < |b|.

Proposition 0.4 (Exercise VIII.2.1). The annulus of convergence for the Laurent series

∞∑
n=−∞

an
2

zn

is 0 < |z| <∞.

Proof. Applying the Cauchy-Hadamard theorem, the annulus of convergence is R1 < |z| <
R2 where

R1 = lim sup
n→∞

∣∣∣a(−n)2∣∣∣1/n = lim sup
n→∞

∣∣∣an2
∣∣∣1/n R2 =

(
lim sup
n→∞

∣∣∣an2
∣∣∣1/n)−1

Working with these expressions, we have

|an2| = |a|n2

=⇒
∣∣∣an2

∣∣∣1/n =
(
|a|n2

)1/n
= |a|n2(1/n) = |a|n

Because |a| < 1,
R1 = lim sup

n→∞
|a|n = 0

So R2 =∞. Thus the annulus of convergence is 0 < |z| <∞.
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Proposition 0.5 (Exercise VIII.4.1). Let p, q be polynomials such that deg q > deg p + 1.
Let C be a circle whose interior contains all of the roots of q. Then∫

C

p(z)

q(z)
dz = 0

Proof. Let z0 be the center of C, and let r0 be the infimum over all r > 0 so that the
circle Cr = {z : |z − z0| = r} contains all of the roots of q. Then p(z)

q(z)
is holomorphic on

{z : |z − z0| > r0}, and ∫
Cr

p(z)

q(z)
dz =

∫
C

p(z)

q(z)
dz

for all r > r0. Since deg q > deg p+ 1, we know that the limit

lim
z→∞

(z − z0)2p(z)

q(z)

exists and is finite, which says that on {z : |z − z0| > r0}, for some M > 0 we have∣∣∣∣p(z)

q(z)

∣∣∣∣ ≤ M

|z − z0|2

Thus for r > r0,∣∣∣∣∫
C

p(z)

q(z)
dz

∣∣∣∣ =

∣∣∣∣∫
Cr

p(z)

q(z)
dz

∣∣∣∣ ≤ ∫
Cr

∣∣∣∣p(z)

q(z)

∣∣∣∣ dz ≤ ∫
Cr

M

|z − z0|2
dz =

∫
Cr

M

r2
dz =

M

r2
L(Cr) =

2πM

r

Since this holds for all r > r0, we conclude that∣∣∣∣∫
C

p(z)

q(z)
dz

∣∣∣∣ = 0 =⇒
∫
C

p(z)

q(z)
dz = 0

Proposition 0.6 (Exercise VIII.7.2a). The isolated singularities of f(z) = z5

1+z+z2+z3+z4
are

e2πi/5 e4πi/5 e6πi/5 e8πi/5 ∞

Each of the above singularities is a pole.

Proof. For z 6= 1, we have

1 + z + z2 + z3 + z4 =
1− z5

1− z
The denominator of f(z) doesn’t vanish for z = 1, so the only finite singularities of f occur
where 1 − z5 = 0 and z 6= 1. Let λ = e2πi/5 be the principal 5th root of unity. Then the
roots of the denominator of f are λ, λ2, λ3, λ4, so these are the finite singularities of f . Now
we check if ∞ is a singularity. Because

f

(
1

z

)
=

1

z + z2 + z3 + z4 + z5
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has a singularity at the origin, f has a singularity at ∞. Furthremore,

lim
z→0

∣∣∣∣f (1

z

)∣∣∣∣ = lim
z→0

∣∣∣∣ 1

z + z2 + z3 + z4 + z5

∣∣∣∣ =∞

so by VIII.9 (Criterion for a Pole), ∞ is a pole of f . Applying this criterion to the other
singularities also tells us that they are poles. For each of λ, λ2, λ3, λ4, we can write f near
the singularity as

f(z) =
z5(1− z)

1− z5
thus

lim
z→λ
|f(z)| = lim

z→λ

∣∣∣∣z5(1− z)

1− z5

∣∣∣∣ =∞

since the numerator is bounded and the denominator goes to zero.

Proposition 0.7 (Exercise VIII.7.2b). The isolated singularities of f(z) = 1
sin2 z

are πk for
k ∈ Z, and each singularity is a pole.

Proof. The function f is holomorphic except when the denominator vanishes or at infinity,
so the only isolated singularities are where sin z = 0 or infinity. The zeroes of sin z are πk
for k ∈ Z. Since f has a singularity on every neighborhood of ∞, there is no neighborhood
of ∞ on which f is holomorphic, so f does not have an isolated singularity at infinity.

We claim that all of these singularities are poles. We have

lim
z→πk

|f(z)| = lim
z→πk

∣∣∣∣ 1

sin2 z

∣∣∣∣ =∞

so by the result in VIII.9, each singularity is a pole.

Proposition 0.8 (Exercise VIII.7.2c). Let f(z) = sin
(
1
z

)
. The isolated singularities of f are

at zero and infinity. Infinity is a removable singularity, and zero is an essential singularity.

Proof. The function f is well defined and holomorphic for z ∈ C \ {0}, so the only possible
isolated singularities are 0,∞. Infinity is a removable singularity because

sin

(
1

1/z

)
has a removable singularity at the origin. The Laurent series for sin

(
1
z

)
centered at zero is

sin

(
1

z

)
= z−1 − z−3

3!
+
z−5

5!
− . . .

which has an unbounded principal part, so zero is an essential singularity.

Proposition 0.9 (Exercise VIII.7.3). A rational function has no essential singularities.
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Proof. The zero function has no singularities, so suppose that f(x) = p(x)
q(x)

is a rational
function where p, q are nonzero rational functions. We can write p and q as products of
linear factors,

f(z) =
A(z − a1) . . . (z − an)

B(z − b1) . . . (z − bk)
We know that f is holomorphic everywhere it is defined, which is everywhere except b0, . . . , bk
and∞, so these are the only possible isolated singularities. If any ai is equal to some bj, the
“same” rational function after cancelling has no more singularities and the funtion before
cancelling may have a removable singularity at the cancelled root, but not an essential
singularity. So we assume that all possible cancellations are made, leaving us with a rational
funciton with no removable singularities.

Now that aj 6= bi for any i, j, we can factor out all copies of any given root, and take the
limit as z → bi. For example, considering b1,

lim
z→b1
|f(z)| = lim

z→b1

∣∣∣∣A(z − a1) . . . (z − an)

B(z − b1) . . . (z − bk)

∣∣∣∣ = lim
z→b1

∣∣∣∣( 1

z − b1

)m
A(bi − a1) . . . (bi − an)

B(bi − b2) . . . (bi − bk)

∣∣∣∣
=

∣∣∣∣A(bi − a1) . . . (bi − an)

B(bi − b2) . . . (bi − bk)

∣∣∣∣ lim
z→b1

∣∣∣∣ 1

z − b1

∣∣∣∣m =∞

so the singularity at b1 is a pole. We can do the same factoring trick for any bi, so each bi is
either a pole or a removable singularity.

Now consider the possible singularity at ∞. If deg p < deg q, then

lim
z→∞

f(z) = 0

which says that f is bounded in a punctured neighborhood of∞, and hence∞ is a removable
singularity. Similarlty, if deg p = deg q, then

lim
z→∞

f(z) =
A

B

where A,B are the leading coefficients of p, q respectively. This also implies that f is bounded
in a punctured neighborhood of ∞, so it is a removable singularity. If deg p > deg q, then

lim
z→∞

f(z) =∞

which implies that ∞ is a pole. Thus f has no essential singularities.

Lemma 0.10 (for Exercise VIII.7.4). Let f, g be nonzero polynomials over a field k. Write
g as a product of powers of distinct irreducible polynomials,

g =
k∏
i=1

pnii

Then there are polynomials b and aij with deg aij < deg pi such that

f

g
= b+

k∑
i=1

ni∑
j=1

aij

pji

If deg f < deg g, then b = 0. In particular, if k = C, then each pi has degree one, so aij are
complex constants.
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Proof. As a base case, suppose deg g = 1. Then by the Euclidean division algorithm, there
exist polynomials q, r so that f = gq + r and deg r < deg g = 1, so r is a constant. Thus

f

g
= q +

r

g

is of the required form. Note that if deg f < deg g, then q = 0.
As an inductive hypothesis, suppose that the result holds for deg g = m, and let deg g =

m + 1. Then we can write g as a product of coprime polynomials P,Q each with degree
strictly less than g, that is, degree less than or equal to m. By Bezout’s Identity, there exist
polynomials C,D such that

CP +DQ = 1

Then
1

g
=
CP +DQ

PQ
=
C

Q
+
D

P
=⇒ f

g
=
fC

Q
+
fD

P

By induction hypothesis, fC
Q

and fD
P

can be written in the desired form, so their sum, f
g

can
be written in the desired form.

Proposition 0.11 (Exercise VIII.7.4). Let f be a nonconstant rational function with poles
z1, . . . , zk ∈ C. Then f can be written as f = f1+ . . .+fk where each fi is a rational function
whose only pole is zi.

Proof. Write f as f(z) = p(z)
q(z)

. First we consider the case where all the poles are finite. Then
deg p < deg q, since ∞ is not a pole. Furthermore, z1, . . . zn are roots of q, so

q(z) = (z − z1)n1 . . . (z − zk)nk

where k1 are positive integers. Then by the previous lemma, we can write f as

f = b+
k∑
i=1

ni∑
j=1

aij
(z − zi)j

=
k∑
i=1

ni∑
j=1

aij
(z − zi)j

where b = 0 since deg p < deg q. We define

fi =

ni∑
j=1

aij
(z − zi)j

and we see that zi is the only pole of fi. We can then find a lowest common denominator
and write fi as a rational function, and we see that f has been written in the claimed form.

Now suppose that f has a pole at ∞. Then f(z) = p(z)
q(z)

where deg p ≥ deg q, since if
deg p < deg q, then∞ is a removable singularity. Without loss of generality, assume zk =∞
and the other poles are finite. Then they are roots of q, so

q(z) = (z − z1)n1 . . . (z − zk−1)nk−1

By the previous lemma, we can write f as

f = b+
k−1∑
i=1

ni∑
j=1

aij
(z − zi)j
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As above, for i = 1, . . . , k − 1, define

fi =

ni∑
j=1

aij
(z − zi)j

And define fk = b. Then∞ is a pole of the polynomial b, so we have written f in the desired
form.

Proposition 0.12 (Exercise VIII.7.5). Let F be a finite subset of C and let f be holomorphic
on C \ F , such that f has no essential singularities. Then f is a rational function.

Proof. Let F = {α1, . . . , αn}. Since each αi is either a pole or removable singularity of f ,
there exists mi ∈ Z so that the limit

lim
z→αi

(z − αi)mif(z)

exists and is finite. Then define

g(z) =
n∏
k=1

(z − αi)mi h(z) =

{
f(z)g(z) z 6∈ F
limw→z f(w)g(w) z ∈ F

As already noted, the limit in the definition of h always exists and is finite, since (z − αi)mi
divides g(z). Thus h is entire.

Since f has no essential singularities, in particular, f does not have an essential singularity
at infinity. If ∞ is a removable singularity, then

lim
z→∞

f(z)

exists and is finite. If ∞ is a pole of order m, then

lim
z→∞

f(z)

zm

exists and is finite. Either way, there exists m ∈ Z and Rf > 0 such that f(z)
zm

is bounded on

|z| > Rf . Similarly, since g is a polynomial, there exists k ∈ Z and Rg > 0 so that g(z)
zk

is
bounded on |z| > Rg. Thus,

h(z)

zm+n
=
f(z)g(z)

zmzn

is bounded on |z| > max(Rf , Rg). Then by the homework exercise VII.11.1, h is a polyno-
mial. Thus

f(z) =
g(z)

h(z)

on C \ F , which is a rational function as g, h are polynomials.

Proposition 0.13 (Exercise VIII.7.6). Let f, g be holomorphic functions both with a pole of
order m at z0. Then

lim
z→z0

f(z)

g(z)
= lim

z→z0

f ′(z)

g′(z)
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Proof. We can represent both f and g locally by Laurent series centered at z0 on punctured
disks. Choose a punctured disk small enough to contain both local representation, so on a
suitable punctured disk we have

f(z) =
∞∑

n=−∞

an(z − z0)n g(z) =
∞∑

n=−∞

bn(z − z0)n

Since both f, g have a pole of order m at z0, an = bn = 0 for n < −m and a−m, b−m 6= 0.
Thus

lim
z→z0

f(z)

g(z)
= lim

z→z0

(z − z0)mf(z)

(z − z0)mg(z)
= lim

z→z0

∑∞
n=−m an(z − z0)n+m∑∞
n=−m bn(z − z0)n+m

For the expression on the right, both the numerator and denominator have a nonzero constant
term plus something divisible by (z−z0), so the limit is the ratio of the constant terms, a−m

b−m
.

Differentiating the Laurent series for f and g gives

f ′(z) =
∞∑

n=−m

nan(z − z0)n−1 g′(z) =
∞∑

n=−m

nbn(z − z0)n−1

Thus

lim
z→z0

f ′(z)

g′(z)
= lim

z→z0

(z − z0)m+1f ′(z)

(z − z0)m+1g′(z)
= lim

z→z0

(z − z0)m+1
∑∞

n=−m nan(z − z0)n−1

(z − z0)m+1
∑∞

n=−m nbn(z − z0)n−1

= lim
z→z0

∑∞
n=−m nan(z − z0)n+m∑∞
n=−m nbn(z − z0)n+m

As before, both numerator and denominator have a nonzero constant term plus something
divisible by (z − z0), so the limit is the ratio of the constant terms, −ma−m−mb−m = a−m

b−m
. Thus

lim
z→z0

f(z)

g(z)
= lim

z→z0

f ′(z)

g′(z)

Proposition 0.14 (Exercise VIII.8.2). Let f be holomorphic with an isolated singularity at
z0 ∈ C. Suppose that there exist M, ε > 0 and a positive integer m so that

0 < |z − z0| < ε =⇒ |f(z)| ≤M |z − z0|−m

Then z0 is either a removable singularity of f or a pole of order at most m.

Proof. We can represent f by a Laurent series on some disk centered at z0,

f(z) =
∞∑

n=−∞

an(z − z0)n

We can assume that this disk lies inside the punctured disk 0 < |z − z0| < ε, by shrinking it
if necessary. On this punctured disk, by hypothesis we have

|(z − z0)mf(z)| ≤M
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so by the result in VIII.8 (page 105 of Sarason), z0 is a removable singularity of
(z − z0)mf(z), which is represented by the Laurent series

(z − z0)mf(z) =
∞∑

n=−∞

an(z − z0)n+m

on a punctured disk centered at z0. Since z0 is a removable singularity, an = 0 for n < −m.
Applying this knowledge to the Laurent series for f , we see that f must have a removable
singularity or pole of order at most m at z0.

Lemma 0.15 (for Exercise VIII.12.1). Let f be holomorphic on an open set containing z0
and let f have a simple pole at z0. Then

resz0 f = lim
z→z0

(z − z0)f(z)

Proof. Since f has a simple pole at z0, there is a small punctured disk on which f has a
Laurent series

f(z) =
∞∑

n=−1

an(z − z0)n

Then on that punctured disk we can represent (z − z0)f(z) by

(z − z0)f(z) =
∞∑

n=−1

an(z − z0)n+1

which is holomorphic, since it is a power series. Thus

lim
z→z0

(z − z0)f(z) = lim
z→z0

∞∑
n=−1

an(z − z0)n+1

=

(
lim
z→z0

a−1

)
+

(
lim
z→z0

(z − z0)
∞∑
n=0

an(z − z0)n
)

= a−1

= resz0 f

Proposition 0.16 (Exercise VIII.12.1). Let g, h be holomorphic in an open set containing
z0, and suppose that h has a simple zero at z0. Then

resz0
g

h
=

g(z0)

h′(z0)

Proof. Because h has a simple zero at z0, we can write h as h(z) = (z − z0)f(z) where f
is a nonvanishing holomorphic function on the same set as h, and f(z0) = h′(z0) 6= 0. If
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g(z0) = 0, then g can be written as g(z) = (z − z0)mt(z) for some holomorphic function t,
where m is the order of the zero at z0. Then

g

h
=

(z − z0)mg(z)

(z − z0)h(z)

has a removable singularity at z0, so resz0
g
h

= 0 which is equal to g(z0)
h′(z0)

= 0
h′(z0)

= 0 and we
have the desired equality.

Now we can assume that g(z0) 6= 0. Since h has a simple zero at z0,
g
h

has a simple pole
at z0 because

lim
z→z0

(z − z0)
g(z)

h(z)
= lim

z→z0
(z − z0)

g(z)

(z − z0)f(z)
= lim

z→z0

g(z)

f(z)
=
g(z0)

f(z0)
6= 0

as g(z0) 6= 0. Thus by the previous lemma,

resz0
g

h
= lim

z→z0
(z − z0)

g(z)

h(z)
=
g(z0)

f(z0)
=

g(z0)

h′(z0)

Proposition 0.17 (Exercise VIII.12.1a). Let p, q be positive integers, and define

f(z) =
zp

1− zq

Let λ be the principal qth root of unity. Then the finite isolated singularities of f are
1, λ, λ2, . . . , λq−1, and the residues at λk is given by

resλk f =
λkp

−
∏q

n 6=k(λ
k − λn)

Proof. Let λ be the principal qth root of unity. Then we can write f as

f(z) =
zp

−
∏q

n=1(z − λn)

Thus the isolated singularities of f are the roots of the denominator, which are the qth roots
of unity. Each is a simple pole, since

lim
z→λk

(z − λk)f(z) = lim
z→λk

(z − λk) zp

−
∏q

n=1(z − λn)
= lim

z→λk

λkp

−
∏q

n6=k(λ
k − λn)

is finite. Thus by a lemma above (Lemma 0.15),

resλk f = lim
z→λk

(z − λk)f(z) =
λkp

−
∏q

n6=k(λ
k − λn)
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Lemma 0.18 (for Exercise VIII.12.2c). If f has a pole of order k at z0, then

resz0 f =
1

(k − 1)!
lim
z→z0

dk−1

dzk−1
(z − z0)kf(z)

Proof. We can represent f by a Laurent series on a punctured disk centered at z0 by

f(z) =
∞∑

n=−k

an(z − z0)n

Multiplying through by (z − z0)k, we get

(z − z0)kf(z) = a−k + . . .+ a−1(z − z0)k−1 + a0(z − z0)k + . . .

After differentiating k − 1 times, we get

dk−1

dzk−1
(z − z0)kf(z) = (k − 1)!a−1 + k!a0(z − z0) + . . .

Then taking the limit as z → z0, we get

lim
z→z0

dk−1

dzk−1
(z − z0)kf(z) = (k − 1)!a−1 = (k − 1)! resz0 f

Then dividing by (k − 1)! gives the desired equality.

Proposition 0.19 (Exercise VIII.12.2b). Define

f(z) =
z5

(z2 − 1)2

Then the isolated singularities of f are ±1, and the residues are

res1 f = res−1 f = 1

Proof. We can rewrite f as

f(z) =
z5

(z − 1)2(z + 1)2

from which we can immediately read off that the only finite isolated singularities are ±1,
and we can see that they are both poles of order 2. Then we compute

res1 f =
1

(2− 1)!
lim
z→1

(
∂

∂z

(
(z − 1)2f(z)

))
= lim

z→1

∂

∂z

(
z5

(z + 1)2

)
= lim

z→1

z4(3z + 5)

(z + 1)3
= 1

res−1 f =
1

(2− 1)!
lim
z→−1

(
∂

∂z

(
(z + 1)2f(z)

))
= lim

z→−1

∂

∂z

(
z5

(z − 1)2

)
= lim

z→−1

z4(3z − 5)

(z − 1)3
= 1
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Proposition 0.20 (Exercise VIII.12.2c). Define

f(z) =
cos z

1 + z + z2

Then the finite singularites of f are e2πi/3, e4πi/3, and the resides at these singularities are

res e2πi/3f =
cos e2πi/3

i
√

3
res e4πi/3f =

cos e4πi/3

−i
√

3

Proof. We can factor the denominator as 1 + z + z2 =
(
z − e2πi/3

) (
z − e4πi/3

)
, so the finite

singularities of f are at e2πi/3, e4πi/3. These are both simple poles, since the numerator does
not vanish off of the real line. Then using our formula,

rese2πi/3 f = lim
z→e2πi/3

(
z − e2πi/3

) cos z

(z − e2πi/3) (z − e4πi/3)
=

cos e2πi/3

e2πi/3 − e4πi/3
=

cos e2πi/3

i
√

3

rese4πi/3 f = lim
z→e4πi/3

(
z − e4πi/3

) cos z

(z − e2πi/3) (z − e4πi/3)
=

cos e4πi/3

e4πi/3 − e2πi/3
=

cos e4πi/3

−i
√

3

Proposition 0.21 (Exercise VIII.12.2d). Define f(z) = 1
sin z

. The finite singularities of f
occur at nπ for n ∈ Z, and the residues are

resnπ f = cosnπ =

{
−1 n is odd

1 n is even

Proof. The singularities of f occur when the denominator vanishes, which occurs at z = nπ
for n ∈ Z. A zero at nπ of sin z is a simple zero because ∂

∂z
sin z = cos z and cos(nπ) = 0.

Thus the poles of f at nπ are simple poles. Thus applying the formula for the residue at a
pole, and using the complex L’Hopital’s rule,

resnπ sin z = lim
z→nπ

z − nπ
sin z

= lim
z→nπ

1

cos z
= cosnπ =

{
−1 n is odd

1 n is even

Proposition 0.22 (Exercise VIII.12.3). Let f be holomorphic in an open set containing z0,
and suppose that f has a zero of order m at z0. Then

resz0
f ′

f
= m

Proof. We can write f as f(z) = (z− z0)mg(z) where g is holomorphic and g(z0) 6= 0. Then
f ′(z) = m(z − z0)m−1g(z) + (z − z0)mg′(z), so

f ′(z)

f(z)
=
m(z − z0)m−1g(z) + (z − z0)mg′(z)

(z − z0)mg(z)
=
mg(z) + (z − z0)g′(z)

(z − z0)g(z)

12



Since g(z0) 6= 0, the denominator of this final quotient has a simple pole at z0, so by Exercise
VIII.12.1,

resz0
f ′

f
= resz0

mg(z) + (z − z0)g′(z)

(z − z0)g(z)
=
mg(z0) + (z0 − z0)g′(z0)

∂
∂z
|z0(z − z0)g(z)

=
mg(z0)

g(z)|z=z0 − (z − z0)g′(z)|z=z0
=
mg(z0)

g(z0)
= m
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