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Lemma 0.1 (for Exercise VIIL1.1). Let b € C\ {0}. Then — is represented by the series
— > b7 in the disk |z| < |b].

Proof. First, note that we can rewrite it as

1 __1( 1 )
z—>b b 1—3

Then we know that 2= is represented by > o0 [ (£)" on 2| <1 <= |z| < [b], so the series
b

representing ﬁ is

1 = " 1 = —n_n = —n—1_n
5 (5) ==

O

Lemma 0.2 (for Exercise VIIL.1.1). Let a € C\ {0}. Then _- is represented by the series
oo a2z in the region |a| < |z|.

1 _1 1
2—a =z 1—%

The second factor is represented by the power series > oc  (2)" on [4] <1 <= |a] < |2].
Thus ﬁ is represented by

Proof. We can rewrite it as




in the annulus |a| < |z| < |b|, where

{a”+1 n<0
Cp =

represents the function —(Z_a)l(z_b)

b1 n>0

Proof. We can rewrite it as

e~ lima) (52) +(65) (59)

n

. . 1 - 00 n.—n—1 1 -
Using the previous tovgo lemmas, — is represented by » > a"z on |a| < |z], and = is

represented by — > "2 b7 12" on |z| < |b|, so on |a| < |z] < |b| we can represent the above

1 - n,—n— 1 - —-n—1_n 1 — n n 1 - —n—1_n
(b_aZaz 1)_<a—b;b lz>:<b—a Za+1z>+<b_a;b 12)

n=—oo

If we define

a™ n<0
C _—
" bt n>0

Then we can represent m by the series

on |a| < |z| < 8. O

Proposition 0.4 (Exercise VII1.2.1). The annulus of convergence for the Laurent series

S TL2 n
> s
is 0 < |z| < o0.
Proof. Applying the Cauchy-Hadamard theorem, the annulus of convergence is Ry < |z| <
Rs> where
l/n) -1

1/n 5 5

(—n)?

Ry = limsup |a
n—o0o

1/n
Ry = (lim sup ‘a”

= lim sup ‘a”
n—o0

n—oo
Working with these expressions, we have

1
n2/

n 1/n
@) =l = |a* ] = (la) " = a0 = ol

Because |a] < 1,

Ry =limsup|a|® =0
n—o0

So Ry = 00. Thus the annulus of convergence is 0 < |z| < oco. O
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Proposition 0.5 (Exercise VIIL.4.1). Let p,q be polynomials such that degq > degp + 1.
Let C be a circle whose interior contains all of the roots of q. Then

P, _
/cq<z>d 0

Proof. Let zy be the center of C, and let ry be the infimum over all » > 0 so that the

circle C, = {z : |z — 2| = r} contains all of the roots of g. Then Z 8 is holomorphic on

for all r > ry. Since degq > degp + 1, we know that the limit

{z:]z — 2| > 10}, and

i (2 20)°P(2)
=m0 q(2)

exists and is finite, which says that on {z : |z — 29| > 7o}, for some M > 0 we have

‘p(Z) M
a(z)| = |z = 2f?
Thus for r > rg,

p(z)

/%d’ -1 %d’ <[5

Since this holds for all » > ry, we conclude that

M M M 2t M
dz < / dz = / —dz=—L(C,) = T
s o’

o |z — 20/ r2 r

]

1 are

Proposition 0.6 (Exercise VIII.7.2a). The isolated singularities of f(z) = m

627rz/5 e47rz/5 667rz/5 687r2/5 00

Each of the above singularities is a pole.

Proof. For z # 1, we have

1—2°

11—z

The denominator of f(z) doesn’t vanish for z = 1, so the only finite singularities of f occur
where 1 — 2° = 0 and z # 1. Let A = €>™/% be the principal 5th root of unity. Then the
roots of the denominator of f are A\, A2, A3, \*, so these are the finite singularities of f. Now
we check if co is a singularity. Because

l+z+27+2°8+2 =

(1) 1
z) 4224344
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has a singularity at the origin, f has a singularity at co. Furthremore,

1 .
1(2)] =

so by VIIL9 (Criterion for a Pole), oo is a pole of f. Applying this criterion to the other
singularities also tells us that they are poles. For each of A, A%, A3, A\*, we can write f near
the singularity as

1

lim
2+ 22+ B2+

z—0

=0

2°(1—2)
M=%
thus (1 )
. . 12°(1—=2
)=t || = e
since the numerator is bounded and the denominator goes to zero. O]

Proposition 0.7 (Exercise VIIL.7.2b). The isolated singularities of f(z) = —5 are wk for
k € Z, and each singularity is a pole.

Proof. The function f is holomorphic except when the denominator vanishes or at infinity,
so the only isolated singularities are where sin z = 0 or infinity. The zeroes of sin z are 7k
for k£ € Z. Since f has a singularity on every neighborhood of oo, there is no neighborhood
of co on which f is holomorphic, so f does not have an isolated singularity at infinity.

We claim that all of these singularities are poles. We have

zllgrlk |f(2’)| - zlif?k sin® 2 -
so by the result in VIII.9, each singularity is a pole. O

Proposition 0.8 (Exercise VIIL7.2c). Let f(z) =sin (1). The isolated singularities of f are

at zero and infinity. Infinity is a removable singularity, and zero is an essential singularity.

Proof. The function f is well defined and holomorphic for z € C\ {0}, so the only possible
isolated singularities are 0, co. Infinity is a removable singularity because

smG%)

has a removable singularity at the origin. The Laurent series for sin (

A o =28 N Z7°
sin(=-)=z"- "4+ — —...
z 3! 5!

which has an unbounded principal part, so zero is an essential singularity. O

1

Z) centered at zero is

Proposition 0.9 (Exercise VIIL.7.3). A rational function has no essential singularities.



v

Proof. The zero function has no singularities, so suppose that f(x) = ﬁ is a rational
function where p,q are nonzero rational functions. We can write p and ¢ as products of
linear factors,
() = Alz—ay)...(z —ap)
B(z—=b1)...(z — by)
We know that f is holomorphic everywhere it is defined, which is everywhere except b, . .., by
and 00, so these are the only possible isolated singularities. If any a; is equal to some b;, the
“same” rational function after cancelling has no more singularities and the funtion before
cancelling may have a removable singularity at the cancelled root, but not an essential
singularity. So we assume that all possible cancellations are made, leaving us with a rational
funciton with no removable singularities.
Now that a; # b; for any 7, j, we can factor out all copies of any given root, and take the
limit as z — b;. For example, considering by,

L A(z—al) (z—an)| . 1 \"A; —ay)...(b; —ay,)
A — al) b — a) ol
B(b — bg) (bz — bk) z—b1 | 2 — bl

so the singularity at b; is a pole. We can do the same factoring trick for any b;, so each b; is
either a pole or a removable singularity.
Now consider the possible singularity at co. If degp < degq, then
lim f(z2) =

Z—00

which says that f is bounded in a punctured neighborhood of oo, and hence oo is a removable
singularity. Similarlty, if degp = degq, then

lim f(z) = 4

Z—»00 B

where A, B are the leading coefficients of p, ¢ respectively. This also implies that f is bounded
in a punctured neighborhood of oo, so it is a removable singularity. If degp > deggq, then

li =
g (e = oo
which implies that oo is a pole. Thus f has no essential singularities. O

Lemma 0.10 (for Exercise VIIL.7.4). Let f,g be nonzero polynomials over a field k. Write
g as a product of powers of distinct irreducible polynomials,

k
g=1]r"
=1

Then there are polynomials b and a;; with deg aij < degp; such that

If deg f < degg, then b= 0. In particular, sz; = C, then each p; has degree one, so a;; are
complex constants.



Proof. As a base case, suppose degg = 1. Then by the Euclidean division algorithm, there
exist polynomials ¢, r so that f = gqg+ r and degr < degg = 1, so r is a constant. Thus

f T
g Y
is of the required form. Note that if deg f < degg, then ¢ = 0.
As an inductive hypothesis, suppose that the result holds for deg g = m, and let deg g =
m + 1. Then we can write g as a product of coprime polynomials P, () each with degree
strictly less than g, that is, degree less than or equal to m. By Bezout’s Identity, there exist
polynomials C', D such that

CP+DQ=1
Then I CP+DQ C D ffCc (D
g PQ QP g Q P
By induction hypothesis, fg and f D can be written in the desired form, so their sum, g can
be written in the desired form. [

Proposition 0.11 (Exercise VIIL.7.4). Let f be a nonconstant rational function with poles
21y...,2k € C. Then f can be written as f = fi+...+ fr where each f; is a rational function
whose only pole is z;.

Proof. Write f as f(z) = E R First we consider the case where all the poles are finite. Then
deg p < degq, since oo is not a pole. Furthermore, 24, ... z, are roots of ¢, so

Nk

q(z)=(z—2z)" ... (2 — z)

where k; are positive integers. Then by the previous lemma, we can write f as

EUED 9 SIS o) R

21]1 11]1

where b = 0 since degp < degq. We define
_ S i
7=1

and we see that z; is the only pole of f;. We can then find a lowest common denominator
and write f; as a rational function, and we see that f has been written in the claimed form.

Now suppose that f has a pole at co. Then f(z) = ‘Z(; where degp > deggq, since if
degp < degq, then oo is a removable singularity. Without loss of generality, assume 2z = oo
and the other poles are finite. Then they are roots of ¢, so

q(z2) =(z—21)" ... (2 — zj—1)"™*

By the previous lemma, we can write f as

k—1 n;

f:b+zz o)

=1 j=1
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As above, for i = 1,...,k — 1, define

ng

Qg5
fi=2_ Gy

Jj=1

And define f; = b. Then oo is a pole of the polynomial b, so we have written f in the desired
form. O

Proposition 0.12 (Exercise VIII.7.5). Let F' be a finite subset of C and let f be holomorphic
on C\ F, such that f has no essential singularities. Then f is a rational function.

Proof. Let F = {ay,...,a,}. Since each «; is either a pole or removable singularity of f,
there exists m; € Z so that the limit
lim (z — ;)™ f(2)

Z—oy

exists and is finite. Then define

9(=) = [ (= = a)™

k=1

M@:{ﬂ@ﬂ@ 2gF
lim,,, f(w)g(w) z€F
As already noted, the limit in the definition of h always exists and is finite, since (z — ;)™
divides g(z). Thus h is entire.

Since f has no essential singularities, in particular, f does not have an essential singularity
at infinity. If co is a removable singularity, then

lim f(z)

Z—00
exists and is finite. If oo is a pole of order m, then

lim )

z—o0 M

exists and is finite. Either way, there exists m € Z and R; > 0 such that % is bounded on
|z| > Ry. Similarly, since g is a polynomial, there exists k¥ € Z and R, > 0 so that % is
bounded on |z| > R,. Thus,

h(z) _ f(2)9(2)

Zm—‘rn Zman

is bounded on |z| > max(Ry, R;). Then by the homework exercise VII.11.1, h is a polyno-
mial. Thus

_9(2)
on C\ F, which is a rational function as g, h are polynomials. O

Proposition 0.13 (Exercise VIII.7.6). Let f, g be holomorphic functions both with a pole of
order m at zo. Then
fz) _ . f(2)

lim 222 = 1
a0 g(2) v g'(2)




Proof. We can represent both f and g locally by Laurent series centered at zy on punctured
disks. Choose a punctured disk small enough to contain both local representation, so on a
suitable punctured disk we have

[e.e]

@)=Y an(z—20)"  g(z)= > bulz—z)"

n=—oo n=—oo

Since both f, g have a pole of order m at zy, a, = b, = 0 for n < —m and a_,,,b_,, # 0.

Thus
) (= 2)"f(2) L D @a(2 — 20)"T
lim —= = lim ———————= = lim ==
= g(z)  om (2 —2)g(2) o )l belz — 20)"
For the expression on the right, both the numerator and denominator have a nonzero constant
term plus something divisible by (z — zp), so the limit is the ratio of the constant terms, Z::
Differentiating the Laurent series for f and g gives

o0 o0

f/(Z) = Z n(ln(Z — Zo)n_l gl(z) = Z nbn(z _ Zo)n—l

n=-—m n=—m
Thus

S )™ (e) L (B )™ T Y nan(z — 20)"
lim =1 = lim o
=20 g'(2) 2o (2 — 20)™ g (2) 220 (2 — zg)™F! nb,(z — zp)" !

n=—m
Yooy (z — 29)"

o z—20 Zoo:7m nbn(z — Zo)n+m

As before, both numerator and denominator have a nonzero constant term plus something
divisible by (z — 2g), so the limit is the ratio of the constant terms, ———== = == Thus

mb_m, b_m
) F)
A9 T )

]

Proposition 0.14 (Exercise VIII.8.2). Let f be holomorphic with an isolated singularity at
z9 € C. Suppose that there exist M,e > 0 and a positive integer m so that

0<|z—2)<e = |f(2)| < M|z — z|™
Then zq is either a removable singularity of f or a pole of order at most m.

Proof. We can represent f by a Laurent series on some disk centered at zg,

o0

flz) = Z an(z — z)"

n=—oo

We can assume that this disk lies inside the punctured disk 0 < |z — zg| < €, by shrinking it
if necessary. On this punctured disk, by hypothesis we have

(z = 20)" f(z)| < M
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so by the result in VIIL.8 (page 105 of Sarason), zy is a removable singularity of
(z — 20)™ f(z), which is represented by the Laurent series

o0

(2 —20)" f(2) = Z an(z = 20)"""

n=—oo

on a punctured disk centered at zy. Since z; is a removable singularity, a,, = 0 for n < —m.
Applying this knowledge to the Laurent series for f, we see that f must have a removable
singularity or pole of order at most m at zg. O

Lemma 0.15 (for Exercise VIII.12.1). Let f be holomorphic on an open set containing zo
and let f have a simple pole at zy. Then

res,, [ = lim (z — 29) f(2)

Z—r20

Proof. Since f has a simple pole at zy, there is a small punctured disk on which f has a

Laurent series
oo

flz) = Z an(z — z)"

n=—1
Then on that punctured disk we can represent (z — 2g)f(z) by

[e.e]

(z—20)f(2) = Z an(z — 20)"

n=-—1

which is holomorphic, since it is a power series. Thus

lim (2 — = li n(z = 20)"

Jim (2 — 20) £ (2) Zggongla(z )
(o) (dmie - e )
:a/fl
=res,, |

O

Proposition 0.16 (Exercise VIII.12.1). Let g, h be holomorphic in an open set containing
zo, and suppose that h has a simple zero at zo. Then

res g = g<ZO)
= h h/(20>

Proof. Because h has a simple zero at zp, we can write h as h(z) = (z — zo) f(z) where f
is a nonvanishing holomorphic function on the same set as h, and f(z9) = h'(zp) # 0. If




g(z0) = 0, then g can be written as g(z) = (z — z9)"™t(z) for some holomorphic function ¢,
where m is the order of the zero at zy. Then

g (- w)ee)
h (2= 2)h(z)
9(z0) _ _0

R (z0) - h’_(zo) = 0 and we

has a removable singularity at 2y, so res, 7 = 0 which is equal to
have the desired equality.

Now we can assume that g(z) # 0. Since h has a simple zero at z, ¥ has a simple pole
at zg because

lim (z — ,20)M = lim (2 — 2) 9(2) = li 9(z) _ 9(z0) #0

————— = lim =
=20 h(z) === (z—20)f(2) === f(2)  fl20)
as g(zo) # 0. Thus by the previous lemma,

res, 9 — \im (z—zo)g = =
o T TG T F ) T W)

Proposition 0.17 (Exercise VIII.12.1a). Let p,q be positive integers, and define

Zp

f(z) =

I

Let X\ be the principal qth root of unity. Then the finite isolated singularities of f are
L, A2, MY and the residues at \F is given by

Ak

resyt f =
’ — LA = A7)

Proof. Let A be the principal qth root of unity. Then we can write f as

Zp

(=X

f(z) = 1714
n=1
Thus the isolated singularities of f are the roots of the denominator, which are the ¢th roots
of unity. Each is a simple pole, since
2P AP

lim (z — A = lim (z — A = li
Jim (= = AN () = Jim (2 = A e oy = 1 oy LOF =)

n=1

is finite. Thus by a lemma above (Lemma 0.15),

. k A
resyr f = lgf\lk(z —A)f(2) = —=3 (AF — Am)
z n#k
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Lemma 0.18 (for Exercise VIII.12.2¢). If f has a pole of order k at zy, then

1 dkfl

res, f = 1) lim = (2 = 20)° f(2)

Proof. We can represent f by a Laurent series on a punctured disk centered at z, by

o0

f(2) =) an(z = 2)"
n=—k
Multiplying through by (z — 2)*, we get
(z—z20)f(z)=a_p+...+a_1(z — 20"+ ao(z — 20)" + ...
After differentiating £ — 1 times, we get

dk—l

W(z — 20 f(2) = (k — Dla_y + klag(z — 20) + . ...

Then taking the limit as z — zy, we get

) dk—l
ZILI?O W(z —20)"f(2) = (k= Dla_y = (k — 1)!res,, f
Then dividing by (k — 1)! gives the desired equality. O

Proposition 0.19 (Exercise VIII.12.2b). Define

25

f(Z) = <Z2 _ 1)2
Then the isolated singularities of f are +1, and the residues are
res; f =res_; f=1

Proof. We can rewrite f as
5

TG = o1

from which we can immediately read off that the only finite isolated singularities are +1,
and we can see that they are both poles of order 2. Then we compute

o _ D) ) 0 2° o 2M3z45)
reslf—mil_{q (E ((z—1) f(z>)> —llﬂ%a <m) gt (z+1)° -

_ 1 : 0 2 _ i 9 2 = li —z4(3Z—5)_
res_y [ = ng@l (a ((z+ 1) f(Z))) _Zlgflla <(z— 1)2) _zll)rill (z—1)3 1

[]
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Proposition 0.20 (Exercise VIII.12.2¢). Define

cos z
)= —
Then the finite singularites of f are €*™/3 e*™/3 and the resides at these singularities are
Cos 6271'1'/3 CoS 647ri/3

res 2™/3 f= res /3 f=

iv3 —iv3

Proof. We can factor the denominator as 1+ z + 2% = (z — €2™/3) (z — €*™/3), so the finite
singularities of f are at e2™/3 ¢™/3 These are both simple poles, since the numerator does

not vanish off of the real line. Then using our formula,

f= lim (s —e¥i) cos z cos e2m/3 cos e2/3
resenss f = lim (2 —e . —— = — —— =
e2mi/ i omi/3 (Z _ 627m/3) (Z _ e47rz/3) e2mi/3 _ pdmi/3 Z\/g
f . arifa) COS 2 cos e4mi/3 cos e*mi/3
resgnss f = lim (2 —e . —— = — —— =
edmi/ edmi/3 (Z _ 627m/3> (Z _ €4m/3) edmi/3 _ p2mi/3 —Z\/g

]

Proposition 0.21 (Exercise VIII.12.2d). Define f(z) = =~. The finite singularities of f
occur at nm for n € Z, and the residues are

—1 n is odd

1 n 1S even

res,, [ = cosnm = {

Proof. The singularities of f occur when the denominator vanishes, which occurs at z = nrw

for n € Z. A zero at nm of sin z is a simple zero because % sin z = cos z and cos(nm) = 0.

Thus the poles of f at nm are simple poles. Thus applying the formula for the residue at a
pole, and using the complex L’Hopital’s rule,

. . z—nTm . 1 —1 mnisodd
res,,sinz = lim — = lim = cosnm = )
z—nm SIN 2 2—nT COS 2 1 n 1S even

]

Proposition 0.22 (Exercise VIII1.12.3). Let f be holomorphic in an open set containing zo,
and suppose that f has a zero of order m at zy. Then

/
res,, — =m

f

Proof. We can write f as f(z) = (z — z0)"g(z) where g is holomorphic and ¢(z) # 0. Then
f'(z) = m(z = 20)"'g(2) + (2 — 20)" ¢ (2), s0

f'(z) _ mlz—20)"g(2) + (2 = 20)"g'(2) _ my(2) + (2 — 20)g'(2)

f(2) (2 = 20)mg(2) (2= 20)9(2)
12



Since g(zg) # 0, the denominator of this final quotient has a simple pole at zg, so by Exercise
VIIL.12.1,

o L M) = 20)g ) mal0) + (o — 20)g'(z0)
SR PR e 21,0~ 2)y(2
my () _ mg(x)

g(2>|z:zo - (Z - ZO)g,(ZNz:zo B g(’ZO)
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